Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 May 07 2021 19:41:45
%S 1,1,2,6,16,40,100,252,636,1604,4044,10196,25708,64820,163436,412084,
%T 1039020,2619764,6605420,16654772,41993004,105880308,266964460,
%U 673118772,1697188012,4279255412,10789627756,27204748468,68593500716,172950260724,436073277676
%N Number of permutations avoiding the patterns {2413,2431,4213,3412,3421,4231,4321,4312}; number of strong sorting class based on 2413.
%C a(n) = term (1,1) in M^n, M = the 4x4 matrix [1,1,1,1; 0,1,0,1; 0,0,1,1; 1,0,0,1]. - _Gary W. Adamson_, Apr 29 2009
%C Number of permutations of length n>0 avoiding the partially ordered pattern (POP) {1>2, 1>4} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first element is larger than the second and fourth elements. - _Sergey Kitaev_, Dec 09 2020
%H Michael De Vlieger, <a href="/A111281/b111281.txt">Table of n, a(n) for n = 0..2490</a>
%H M. Albert, R. Aldred, M. Atkinson, C Handley, D. Holton, D. McCaughan and H. van Ditmarsch, <a href="https://doi.org/10.37236/1928">Sorting Classes</a>, Elec. J. of Comb. 12 (2005) R31.
%H Alice L. L. Gao, Sergey Kitaev, <a href="https://arxiv.org/abs/1903.08946">On partially ordered patterns of length 4 and 5 in permutations</a>, arXiv:1903.08946 [math.CO], 2019.
%H Alice L. L. Gao, Sergey Kitaev, <a href="https://doi.org/10.37236/8605">On partially ordered patterns of length 4 and 5 in permutations</a>, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
%H Kai Ting Keshia Yap, David Wehlau, and Imed Zaguia, <a href="https://arxiv.org/abs/2101.12061">Permutations Avoiding Certain Partially-ordered Patterns</a>, arXiv:2101.12061 [math.CO], 2021.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,2).
%F a(n) = 3*a(n-1)-2*a(n-2)+2*a(n-3).
%F G.f.: 1+x*(1-x+2*x^2)/(1-3*x+2*x^2-2*x^3). - _Colin Barker_, Jan 16 2012
%t a[1] = 1; a[2] = 2; a[3] = 6; a[n_] := a[n] = 3a[n - 1] - 2a[n - 2] + 2a[n - 3]; Table[a[n], {n, 28}] (* _Robert G. Wilson v_ *)
%K nonn,easy
%O 0,3
%A _Len Smiley_, Nov 01 2005
%E More terms from _Robert G. Wilson v_, Nov 04 2005
%E a(0)=1 prepended by _Alois P. Heinz_, May 07 2021