Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Mar 19 2022 13:46:59
%S 1,20,449,6792,67063,484419,2750715,12919671,52083292,185179593,
%T 592791088,1736022657,4710111660,11959634412,28654640036,65224656452,
%U 141850935657,296163412400,596041392921,1160330645548,2191579277799,4026627536451,7213267409435
%N Number of 5 X 5 magic squares with line sum n.
%D Maya Ahmed, Jesús De Loera and Raymond Hemmecke, Polyhedral cones of magic cubes and squares, in Discrete and Computational Geometry, Springer, Berlin, 2003, pp. 25-41.
%H Alois P. Heinz, <a href="/A111158/b111158.txt">Table of n, a(n) for n = 0..10000</a>
%H M. Ahmed, J. De Loera, R. Hemmecke, <a href="https://arxiv.org/abs/math/0201108">Polyhedral Cones of Magic Cubes and Squares</a>, arXiv:0201108 [math.CO], 2002.
%H J. A. De Loera, D. Haws, R. Hemmecke, P. Huggins, B. Sturmfels et al., <a href="http://dx.doi.org/10.1016/j.jsc.2004.02.001">Short rational functions for toric algebra and applications</a>, J. Symb. Comput. 38 (2) (2004) 959-973
%F G.f.: -(1 + 28*t + 639*t^2 + 11050*t^3 + 136266*t^4 + 1255833*t^5 + 9120009*t^6 + 54389347*t^7 + 274778754*t^8 + 1204206107*t^9 + 4663304831*t^10 + 16193751710*t^11 + 51030919095*t^12 + 147368813970*t^13 + 393197605792*t^14 + 975980866856*t^15 + 2266977091533*t^16 + 4952467350549*t^17 + 10220353765317*t^18 + 20000425620982*t^19 + 37238997469701*t^20 + 66164771134709*t^21 + 112476891429452*t^22 + 183365550921732*t^23 + 287269293973236*t^24 + 433289919534912*t^25 + 630230390692834*t^26 + 885291593024017*t^27 + 1202550133880678*t^28 + 1581424159799051*t^29 + 2015395674628040*t^30 + 2491275358809867*t^31 + 2989255690350053*t^32 + 3483898479782320*t^33 + 3946056312532923*t^34 + 4345559454316341*t^35 + 4654344257066635*t^36 + 4849590327731195*t^37 + 4916398325176454*t^38 + 4849590327731195*t^39 + 4654344257066635*t^40 + 4345559454316341*t^41 + 3946056312532923*t^42 + 3483898479782320*t^43 + 2989255690350053*t^44 + 2491275358809867*t^45 + 2015395674628040*t^46 + 1581424159799051*t^47 + 1202550133880678*t^48 + 885291593024017*t^49 + 630230390692834*t^50 + 433289919534912*t^51 + 287269293973236*t^52 + 183365550921732*t^53 + 112476891429452*t^54 + 66164771134709*t^55 + 37238997469701*t^56 + 20000425620982*t^57 + 10220353765317*t^58 + 4952467350549*t^59 + 2266977091533*t^60 + 975980866856*t^61 + 393197605792*t^62 + 147368813970*t^63 + 51030919095*t^64 + 16193751710*t^65 + 4663304831*t^66 + 1204206107*t^67 + 274778754*t^68 + 54389347*t^69 + 9120009*t^70 + 1255833*t^71 + 136266*t^72 + 11050*t^73 + 639*t^74 + 28*t^75 + t^76) / ((-1 + t^2)^6*(t^2 + t + 1)^7*(t^6 + t^5 + t^4 + t^3 + t^2 + t + 1)^2*(t^6 + t^3 + 1)*(t^4 + t^3 + t^2 + t + 1)^4*(-1 + t)^9*(t + 1)^4*(t^2 + 1)^4).
%Y Cf. A093199, A111086.
%K nonn
%O 0,2
%A _N. J. A. Sloane_, using g.f. supplied by Jesús De Loera (deloera(AT)math.ucdavis.edu), Oct 22 2005