login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Product{1<=k<=n,GCD(k,n)=1} F(k), where F(k) is the k-th Fibonacci number.
0

%I #8 Apr 09 2014 10:16:30

%S 1,1,1,2,6,5,240,130,4095,884,122522400,5785,1570247078400,7050580,

%T 6402818331,55911099400,83044763560621070208000,2152604285,

%U 342696507457909818131702784000,122400523811956,16017296251646471425875

%N Product{1<=k<=n,GCD(k,n)=1} F(k), where F(k) is the k-th Fibonacci number.

%e The positive integers <= 8 and coprime to 8 are 1,3,5,7. So a(8) = F(1)*F(3)*F(5)*F(7) = 1*2*5*13 = 130.

%t f[n_] := Times @@ Fibonacci /@ Select[ Range[n], GCD[ #, n] == 1 &]; Array[f, 21] (* _Robert G. Wilson v_ *)

%Y Cf. A000045, A070964.

%K nonn

%O 1,4

%A _Leroy Quet_, Oct 15 2005

%E More terms from _Robert G. Wilson v_, Oct 17 2005