login
Smallest squarefree integer > the n-th term of the Fibonacci sequence.
1

%I #11 Sep 03 2017 03:31:43

%S 1,2,2,3,5,6,10,14,22,35,57,91,145,235,379,611,989,1598,2585,4182,

%T 6766,10947,17713,28658,46369,75026,121394,196419,317813,514230,

%U 832042,1346270,2178310,3524579,5702889,9227467,14930353,24157819,39088171

%N Smallest squarefree integer > the n-th term of the Fibonacci sequence.

%e a(4) = 5 because 5 is the smallest squarefree integer greater than 3, the 4th number of the Fibonacci sequence.

%p with(numtheory): with(combinat): a:=proc(n) local B,j: B:={}: for j from 1+fibonacci(n) to 20+fibonacci(n) do if abs(mobius(j))>0 then B:=B union {j} else B:=B fi od: B[1]: end: seq(a(n),n=0..43); # _Emeric Deutsch_, Oct 11 2005

%t f[n_] := Block[{k = Fibonacci[n] + 1}, While[ Union[Last /@ FactorInteger[k]][[ -1]] > 1, k++ ]; k]; Table[ f[n], {n, 0, 38}] (* _Robert G. Wilson v_ *)

%t ssi[n_]:=Module[{k=n+1},While[!SquareFreeQ[k],k++];k]; ssi/@Fibonacci[ Range[0,40]] (* _Harvey P. Dale_, Apr 12 2015 *)

%Y Cf. A000045, A005117.

%K nonn

%O 0,2

%A Joseph Buszka (jab5118(AT)psu.edu), Oct 11 2005

%E More terms from _Robert G. Wilson v_ and _Emeric Deutsch_, Oct 11 2005