Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #39 Sep 08 2022 08:45:20
%S 5,6,7,14,15,16,17,18,19,20,21,22,23,24,25,32,33,34,41,42,43,44,45,46,
%T 47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,
%U 70,71,72,73,74,75,76,77,78,79,86,87,88,95,96,97,98,99,100
%N Indices of Catalan numbers that are divisible by 3.
%C Conjecture: The sequence contains all numbers n such that n and n+1 are both in the sequence A074940, or, equivalently, such that neither n nor n+1 is in the sequence A005836. - _L. Edson Jeffery_, Dec 02 2015
%C The asymptotic density of this sequence is 1 (Burns, 2016). - _Amiram Eldar_, Jan 26 2021
%H G. C. Greubel, <a href="/A111018/b111018.txt">Table of n, a(n) for n = 1..1000</a>
%H Rob Burns, <a href="https://arxiv.org/abs/1611.03705">Asymptotic density of Catalan numbers modulo 3 and powers of 2</a>, arXiv:1611.03705 [math.NT], 2016.
%t Flatten[Position[CatalanNumber[Range[100]],_?(Divisible[#,3]&)]] (* _Harvey P. Dale_, Oct 25 2011 *)
%t Select[Range@100, Divisible[CatalanNumber@#,3]&] (* _Vladimir Reshetnikov_, Nov 06 2015 *)
%o (PARI) for(n=0, 1e3, if(binomial(2*n, n)/(n+1) % 3 == 0, print1(n, ", "))) \\ _Altug Alkan_, Dec 02 2015
%o (Magma) [n: n in [1..200] | Binomial(2*n, n) div (n+1) mod 3 eq 0]; // _Vincenzo Librandi_, Dec 03 2015
%Y Cf. A000108.
%Y Cf. A085296, A265100, A265104.
%K nonn
%O 1,1
%A _Robert G. Wilson v_, Sep 09 2005