login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = gcd(f(n), f(n+1)) where f(n) = n^4 + n^2 + 1.
1

%I #26 Sep 08 2022 08:45:20

%S 1,3,7,91,21,31,43,57,73,91,777,133,157,183,211,241,273,2149,343,381,

%T 421,463,507,553,4207,651,703,757,813,871,931,6951,1057,1123,1191,

%U 1261,1333,1407,10381,1561,1641,1723,1807,1893,1981,14497,2163,2257,2353

%N a(n) = gcd(f(n), f(n+1)) where f(n) = n^4 + n^2 + 1.

%H Harvey P. Dale, <a href="/A111002/b111002.txt">Table of n, a(n) for n = 0..1000</a>

%H PlanetMath, <a href="http://planetmath.org/ExampleOfGcd">Example of GCD</a>

%F a(n) = gcd(f(n), f(n+1)) for all n. a(n) = n^2 + n + 1, except when n congruent to 3 modulo 7 when a(n) = 7(n^2 + n + 1).

%F Conjectures from _Colin Barker_, Oct 06 2015: (Start)

%F a(n) = 3*a(n-7) - 3*a(n-14) + a(n-21) for n>20.

%F G.f.: -(x^20 +3*x^19 +7*x^18 +91*x^17 +21*x^16 +31*x^15 +43*x^14 +54*x^13 +64*x^12 +70*x^11 +504*x^10 +70*x^9 +64*x^8 +54*x^7 +43*x^6 +31*x^5 +21*x^4 +91*x^3 +7*x^2 +3*x +1) / ((x -1)^3*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)^3).

%F (End)

%e a(10) = 7(10^2 + 10 + 1) = 777 because 10 is congruent to 3 modulo 7.

%t f[n_] := n^4 + n^2 + 1; Table[ GCD[f[n], f[n + 1]], {n, 0, 49}] (* _Robert G. Wilson v_, Oct 02 2005 *)

%t GCD[#[[1]],#[[2]]]&/@Partition[Table[n^4+n^2+1,{n,0,50}],2,1] (* _Harvey P. Dale_, Mar 07 2015 *)

%o (PARI) m=50;a=3;for(k=2,m,b=k^4+k^2+1;print1(gcd(a,b),",");a=b) \\ _Klaus Brockhaus_, Oct 02 2005

%o (Magma) [Gcd(n^4+n^2+1, n^4+4*n^3+7*n^2+6*n+3): n in [0..50]]; // _Vincenzo Librandi_, Oct 07 2015

%K easy,nonn

%O 0,2

%A _Pahikkala Jussi_, Sep 30 2005

%E More terms from _Robert G. Wilson v_ and _Klaus Brockhaus_, Oct 02 2005