login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110914
"Self-convolution mod 3" of central Delannoy numbers (see comment).
0
1, 0, 2, 0, 1, 0, 2, 0, 4, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 4, 0, 2, 0, 4, 0, 8, 0, 4, 0, 2, 0, 4, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 4, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 4, 0, 2, 0, 4, 0, 8, 0, 4, 0, 2, 0, 4, 0, 2, 0, 4, 0, 8, 0, 4, 0, 8, 0, 16, 0, 8, 0, 4, 0, 8, 0, 4, 0, 2, 0, 4, 0, 2, 0, 4, 0, 8, 0, 4
OFFSET
0,3
COMMENTS
a(n) = Sum_{k=0..n} ((b(k)*b(n-k)) mod 3) where b(k) = Sum_{k=0..n} binomial(n,k)*binomial(n+k,k) are the central Delannoy numbers. The formula is obtained using techniques described in the Deutsch-Sagan paper.
LINKS
E. Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, arXiv:math/0407326 [math.CO], 2004.
E. Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Num. Theory 117 (2006), 191-215.
FORMULA
a(2n-1)=0 and a(2n)=2^t_1(n) where t_1(n) denotes the number of 1's in the ternary representation of n (A062756). Recurrence: a(3n)=a(n), a(3n+1)=a(n-1), a(3n+2)=2*a(n).
MATHEMATICA
b[n_] := Sum[Binomial[n, k] Binomial[n + k, k], {k, 0, n}];
a[n_] := Sum[Mod[b[k] b[n - k], 3], {k, 0, n}];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 17 2019 *)
PROG
(PARI) b(n)=sum(k=0, n, binomial(n, k)*binomial(n+k, k)); a(n)=sum(k=0, n, (b(k)*b(n-k))%3)
CROSSREFS
Cf. A062756.
Sequence in context: A158945 A156667 A178090 * A219200 A341978 A193527
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Oct 04 2005
STATUS
approved