login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of consecutive digits in the decimal expansion of Pi.
2

%I #14 Mar 24 2023 04:23:36

%S 4,5,5,6,14,11,8,11,8,8,13,17,16,16,12,5,5,11,12,10,8,8,10,7,6,11,11,

%T 5,9,16,14,5,2,10,16,12,5,10,16,8,7,15,12,12,18,12,10,12,6,1,5,13,10,

%U 2,9,16,11,13,13,8,9,14,11,5,3,7,15,9,7,10,4,6,8,10,14,8,2,8,17,18,17,14,8

%N Sum of consecutive digits in the decimal expansion of Pi.

%H B. Deal, <a href="http://seqpost.notlong.com">Sequence puzzle posting at Clifford Pickover forum</a>. [Broken link]

%H B. Deal, <a href="http://pi314159.notlong.com">Home Page</a>.

%H A. Frank and P. Jacqueroux, <a href="http://www.paulcooijmans.com/others/intcontest.pdf">International Contest</a>, 2001. Item 25.

%F a(n) = p(n) + p(n+1) where p(n) is the n-th digit of Pi (see sequence A000796).

%F a(n) = A000796(n) + A000796(n+1).

%e a(1)=3+1 = 4, a(2)=1+4 = 5, a(3)=4+1 = 5, a(4)=1+5 = 6, a(5)=5+9 = 14

%t listlength = 100; Table[IntegerDigits[IntegerPart[10^listlength Pi]][[i]] + IntegerDigits[IntegerPart[10^listlength (Pi - 3.0`100)]][[i]], {i, 1, listlength}]

%Y Cf. A000796.

%K base,nonn

%O 1,1

%A Blaine J. Deal and Mark Nandor, Sep 19 2005

%E Typo in formula fixed by _Zak Seidov_, Jan 02 2014