login
Highest minimal distance of Type I but not Type II additive Hermitian self-dual codes of length n over GF(4).
0

%I #13 Apr 15 2019 01:34:04

%S 1,1,2,2,3,3,3,4,4,4,5,5,5

%N Highest minimal distance of Type I but not Type II additive Hermitian self-dual codes of length n over GF(4).

%H L. E. Danielsen and M. G. Parker, <a href="http://dx.doi.org/10.1016/j.jcta.2005.12.004">On the classification of all self-dual additive codes over GF(4) of length up to 12</a>, J. Combin. Theory A 113 (7) (2006) 1351-1367.

%H L. E. Danielsen and M. G. Parker, <a href="https://arxiv.org/abs/math/0504522">On the classification of all self-dual additive codes over GF(4) of length up to 12</a>, arXiv:math/0504522 [math.CO], 2005-2006.

%H W. C. Huffman, <a href="https://doi.org/10.1016/j.ffa.2005.05.012">On the classification and enumeration of self-dual codes</a>, Finite Fields Applic., 11 (2005), 451-490.

%H G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.

%K nonn,more

%O 1,3

%A _N. J. A. Sloane_, Sep 19 2005