login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that the concatenation 1,2,3,...,(k-1) is divisible by k.
5

%I #31 Oct 12 2024 09:02:19

%S 1,3,9,27,69,1053,1599,2511,8167,21371,73323,225681,313401,362703,

%T 371321,1896939,2735667,3426273,3795093,5433153,302278903,1371292077,

%U 19755637749,23560349643,33184178631

%N Numbers k such that the concatenation 1,2,3,...,(k-1) is divisible by k.

%C Subsequence of A029455 composed of the terms coprime to 10. - _Max Alekseyev_, Jun 07 2023

%C a(26) > 10^11. - _Jason Yuen_, Oct 12 2024

%e 3 divides 12, 9 divides 12345678.

%t s = ""; Do[s = s <> ToString[n]; If[Mod[ToExpression[s], n + 1] == 0, Print[n + 1]], {n, 0, 5*10^6}] (* _Ryan Propper_, Aug 28 2005 *)

%t Select[Range[55*10^5],Divisible[FromDigits[Flatten[IntegerDigits/@Range[ #-1]]],#]&] (* _Harvey P. Dale_, Mar 28 2020 *)

%o (Python) # See A029455 for concat_mod

%o def isok(k): return concat_mod(10, k-1, k)==0 # _Jason Yuen_, Oct 06 2024

%Y Cf. A007908, A029455, A094151, A171785, A332580, A362966.

%K base,nonn,more,hard

%O 1,2

%A _Amarnath Murthy_, Aug 10 2005

%E More terms from _Ryan Propper_, Aug 28 2005

%E a(20) from _Giovanni Resta_, Apr 10 2018

%E a(21)-a(24) from _Scott R. Shannon_, using a modified version of an algorithm by _Joseph Myers_, Apr 10 2020

%E a(25) from _Jason Yuen_, Oct 06 2024