Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Aug 14 2024 10:08:35
%S 9,104,3724,152978,6772428,318919354,15762420826,808272767014,
%T 42631956711628,2298618088718378,126131492134695474,
%U 7020934326396461014,395480502329858803674,22501172037539767125398
%N Kekulé numbers for certain benzenoids of trigonal symmetry.
%D S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 313).
%H G. C. Greubel, <a href="/A110698/b110698.txt">Table of n, a(n) for n = 0..550</a>
%F a(n) = 20*binomial(2n, n)^3 - 18*binomial(2n, n)^2 + 9*binomial(2n, n) - 2.
%p A110698 :=n->20*binomial(2*n,n)^3-18*binomial(2*n,n)^2+9*binomial(2*n,n)-2; seq(A110698(n),n=0..16);
%t Table[20*Binomial[2*n, n]^3 - 18*Binomial[2*n, n]^2 + 9*Binomial[2*n, n] - 2, {n,0,50}] (* _G. C. Greubel_, Sep 06 2017 *)
%o (PARI) for(n=0,25, print1(20*binomial(2n, n)^3 - 18*binomial(2n, n)^2 + 9*binomial(2n, n) - 2, ", ")) \\ _G. C. Greubel_, Sep 06 2017
%K nonn
%O 0,1
%A _Emeric Deutsch_, Aug 03 2005