Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 May 19 2019 06:21:33
%S 1,-8,28,-100,358,-1276,4558,-16342,58732,-211306,760498,-2737168,
%T 9851098,-35452510,127584124,-459135130,1652275834,-5945992576,
%U 21397667026,-77003195254,277109379628,-997226422690,3588693361378,-12914539595584,46475225095450
%N Expansion of -(7*x^2+3*x-1)*(2*x^2+2*x+1) / ((3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1)).
%H G. C. Greubel, <a href="/A110687/b110687.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (-7,-17,-20,-12,-6).
%F a(n) = -7*a(n-1) - 17*a(n-2) - 20*a(n-3) - 12*a(n-4) - 6*a(n-5) for n>4. - _Colin Barker_, May 19 2019
%p seriestolist(series(-(7*x^2+3*x-1)*(2*x^2+2*x+1)/((3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1)), x=0,25)); -or- Floretion Algebra Multiplication Program, FAMP Code: tessum(infty)-4basekforsumseq[ + 'i - .25'j + .25'k - .25j' + .25k' - .5'ii' - .25'ij' - .25'ik' - .25'ji' - .25'ki' - .5e], Sumtype is set to: default; Fortype is set to: 1A.
%t CoefficientList[Series[-(7*x^2 + 3*x - 1)*(2*x^2 + 2*x + 1)/((3*x^2 + 3*x + 1)*(2*x^3 + 2*x^2 + 4*x + 1)), {x,0,50}], x] (* _G. C. Greubel_, Sep 06 2017 *)
%o (PARI) Vec(-(7*x^2+3*x-1)*(2*x^2+2*x+1)/((3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1))+O(x^99)) \\ _Charles R Greathouse IV_, Sep 26 2012
%Y Cf. A110688, A110689, A110679.
%K sign,easy
%O 0,2
%A _Creighton Dement_, Aug 02 2005