login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

n^2 followed by n^4 followed by n followed by n^3.
2

%I #23 Sep 08 2022 08:45:20

%S 1,1,1,1,4,16,2,8,9,81,3,27,16,256,4,64,25,625,5,125,36,1296,6,216,49,

%T 2401,7,343,64,4096,8,512,81,6561,9,729,100,10000,10,1000,121,14641,

%U 11,1331,144,20736,12,1728,169,28561,13,2197,196,38416,14,2744,225,50625

%N n^2 followed by n^4 followed by n followed by n^3.

%H Vincenzo Librandi, <a href="/A110650/b110650.txt">Table of n, a(n) for n = 1..8000</a>

%F a(n) = floor((n+3)/4)^((-8*(n mod 4)^3 + 33*(n mod 4)^2 - 31*(n mod 4) + 18)/6). - _Luce ETIENNE_, Apr 07 2018

%F From _Chai Wah Wu_, Jan 10 2020: (Start)

%F a(n) = 5*a(n-4) - 10*a(n-8) + 10*a(n-12) - 5*a(n-16) + a(n-20) for n > 20.

%F G.f.: x*(x^15 + x^14 - x^13 - x^12 + 3*x^11 - 3*x^10 - 11*x^9 + x^8 - 3*x^7 + 3*x^6 - 11*x^5 + x^4 - x^3 - x^2 - x - 1)/((x - 1)^5*(x + 1)^5*(x^2 + 1)^5). (End)

%t Flatten[Table[{n^2,n^4,n,n^3},{n,20}]] (* _Harvey P. Dale_, Oct 10 2012 *)

%o (Magma) &cat[[n^2, n^4, n, n^3]: n in [1..20]]; // _Vincenzo Librandi_, Nov 25 2012

%o (GAP) Flat(List([1..20],n->[n^2,n^4,n,n^3])); # _Muniru A Asiru_, Apr 08 2018

%Y Cf. A000463; A109588; A109594.

%Y Cf. A010873.

%K nonn,easy

%O 1,5

%A _Mohammad K. Azarian_, Sep 14 2005