login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sequence is {a(0,n)}, where a(m,0)=1, a(m,n) = a(m,n-1) + a(m-1,n), a(0,n+1) = a(n,n).
5

%I #17 Jun 05 2021 15:24:12

%S 1,1,2,7,29,132,648,3407,19109,113946,719896,4802318,33712717,

%T 248285282,1912928549,15379305080,128729241725,1119519156562,

%U 10097102345993,94285391374568,910145431036423,9069616636456648,93179779321299479

%N Sequence is {a(0,n)}, where a(m,0)=1, a(m,n) = a(m,n-1) + a(m-1,n), a(0,n+1) = a(n,n).

%C Equals eigensequence of triangle A100100. - _Gary W. Adamson_, Feb 02 2009

%H G. C. Greubel, <a href="/A110576/b110576.txt">Table of n, a(n) for n = 0..570</a>

%F a(0, n+1) = Sum_{k=0..n} binomial(2*n-k-1, n-1)*a(0, k), with a(0,0) = 1.

%e a(0,n): 1, 1, 2, 7, 29

%e a(1,n): 1, 2, 4, 11

%e a(2,n): 1, 3, 7, 18

%e a(3,n): 1, 4, 11, 29

%e Since a(3,3) = 29, a(0,4) also is 29.

%t a[0, 0] := 1; a[0, 1] := 1; a[0, n_] := a[0, n] = Sum[Binomial[2*n - k - 3, n - 2]*a[0, k], {k, 0, n - 1}]; Table[a[0,n], {n,0,50}] (* _G. C. Greubel_, Aug 31 2017 *)

%Y Cf. A110577, A110578, A110579, A110580.

%Y Cf. A100100. - _Gary W. Adamson_, Feb 02 2009

%K easy,nonn

%O 0,3

%A _Leroy Quet_, Jul 28 2005

%E More terms from _Ryan Propper_, Sep 25 2005