login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=1..n} ceiling(k^n/n^k).
2

%I #9 Aug 31 2017 03:16:22

%S 1,2,3,5,8,15,27,57,142,381,1110,3484,11678,41566,156319,618829,

%T 2570651,11174315,50704149,239641306,1177394450,6002778135,

%U 31706648191,173250478087,977993291266,5696294311736,34193455142322,211311452026745

%N a(n) = Sum_{k=1..n} ceiling(k^n/n^k).

%C Row sums of number triangle A110535.

%H G. C. Greubel, <a href="/A110536/b110536.txt">Table of n, a(n) for n = 1..635</a>

%F a(n) = Sum_{k=1..n} ceiling(k^n/n^k).

%t Table[Sum[Ceiling[k^n/n^k],{k,n}],{n,30}] (* _Harvey P. Dale_, Mar 01 2015 *)

%o (PARI) for(n=1,25, print1(sum(k=1,n, ceil(k^n/n^k)), ", ")) \\ _G. C. Greubel_, Aug 30 2017

%K easy,nonn

%O 1,2

%A _Paul Barry_, Jul 25 2005