login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = floor(n/2) * floor(n/5).
6

%I #15 Mar 30 2023 02:37:38

%S 0,0,0,0,0,2,3,3,4,4,10,10,12,12,14,21,24,24,27,27,40,40,44,44,48,60,

%T 65,65,70,70,90,90,96,96,102,119,126,126,133,133,160,160,168,168,176,

%U 198,207,207,216,216,250,250,260,260,270,297,308,308,319,319,360,360,372

%N a(n) = floor(n/2) * floor(n/5).

%H G. C. Greubel, <a href="/A110533/b110533.txt">Table of n, a(n) for n = 0..5000</a>

%F a(n) = A004526(n)*A002266(n).

%F From _R. J. Mathar_, Feb 20 2011: (Start)

%F a(n) = +a(n-2) +a(n-5) -a(n-7) +a(n-10) -a(n-12) -a(n-15) +a(n-17).

%F G.f.: -x^5*(2+3*x+x^2+x^3+x^4+4*x^5+3*x^6+x^7+x^8+x^9+x^10+x^11) / ( (x^4-x^3+x^2-x+1) *(1+x)^2 *(x^4+x^3+x^2+x+1)^2 *(x-1)^3 ). (End)

%F Sum_{n>=5} (-1)^(n+1)/a(n) = sqrt(5*(5-2*sqrt(5)))*Pi/8 - (5/8)*(1 + sqrt(5)*log(phi)) + (25/16)*log(5) - 2*log(2), where phi is the golden ratio (A001622). - _Amiram Eldar_, Mar 30 2023

%t Table[Floor[n/2]*Floor[n/5], {n, 0, 50}] (* _G. C. Greubel_, Aug 30 2017 *)

%o (PARI) for(n=0,50, print1(floor(n/2)*floor(n/5), ", ")) \\ _G. C. Greubel_, Aug 30 2017

%Y Cf. A001622, A002266, A004526, A010762, A110532.

%K nonn

%O 0,6

%A _Reinhard Zumkeller_, Jul 25 2005