Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Dec 30 2024 17:16:33
%S 1,0,-2,2,2,-6,2,10,-14,-6,34,-22,-46,90,2,-182,178,186,-542,170,914,
%T -1254,-574,3082,-1934,-4230,8098,362,-16558,15834,17282,-48950,14386,
%U 83514,-112286,-54742,279314,-169830,-388798,728458
%N Expansion of (1 + x)/(1 + x + 2x^2).
%C Row sums of number triangle A110511.
%C The sequences A110512 and A001607 are conjugated by one of the relations ((-1 + i*sqrt(7))/2)^n = a(n) + A001607(n)*(-1 + i*sqrt(7))/2 or ((-1 - i*sqrt(7))/2)^n = a(n) + A001607(n)*(-1 - i*sqrt(7))/2. These relations are connected with the Gauss sums; for example, if e := exp(i*2Pi/7) then e + e^2 + e^4 = (-1 + i*sqrt(7))/2 and e^3 + e^5 + e^6 = (-1 - i*sqrt(7))/2 -- for details see Witula's book. We also have a(n+1) = -2*A001607(n), which implies the Binet formula for a(n) (from the respective Binet formula for A001607(n) given in A001607), and A001607(n+1) = a(n) - A001607(n). - _Roman Witula_, Jul 27 2012
%C Pisano period lengths: 1, 1, 8, 1, 24, 8, 42, 1, 24, 24, 10, 8, 168, 42, 24, 2, 144, 24, 360, 24, ... - _R. J. Mathar_, Aug 10 2012
%D R. Witula, On some applications of formulas for unimodular complex numbers, Jacek Skalmierski's Press, Gliwice 2011 (in Polish).
%H G. C. Greubel, <a href="/A110512/b110512.txt">Table of n, a(n) for n = 0..1000</a>
%H Tejo V. Madhavarapu, <a href="https://arxiv.org/abs/2407.09000">The Most Malicious Maître D'</a>, arXiv:2407.09000 [math.CO], 2024. See p. 3.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-2).
%F a(n) = Sum_{k=0..n} Sum_{j=0..n} (-1)^(n-j)*C(n, j)*(-2)^(j-k)*C(k, j-k).
%F a(n) = (-1)^n*A078020(n). - _R. J. Mathar_, Feb 04 2009
%F a(n+2) + a(n+1) + 2*a(n) = 0. - _Roman Witula_, Jul 27 2012
%F G.f.: 2 - x + 2*x^2 + 3*x/Q(0), where Q(k)= 1 - 1/(4^k - 2*x*16^k/(2*x*4^k + 1/(1 + 1/(2*4^k - 8*x*16^k/(4*x*4^k + 1/Q(k+1)))))); (continued fraction). - _Sergei N. Gladkovskii_, May 22 2013
%t CoefficientList[Series[(1 + x)/(1 + x + 2*x^2), {x,0,50}], x] (* _G. C. Greubel_, Aug 29 2017 *)
%t LinearRecurrence[{-1,-2},{1,0},40] (* _Harvey P. Dale_, Dec 30 2024 *)
%o (PARI) x='x+O('x^50); Vec((1 + x)/(1 + x + 2*x^2)) \\ _G. C. Greubel_, Aug 29 2017
%K easy,sign,changed
%O 0,3
%A _Paul Barry_, Jul 24 2005