Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jan 17 2018 03:23:46
%S 0,1,3,7,30,144,876,6084,48816,438624,4389120,48263040,579242880,
%T 7529552640,105417365760,1581231456000,25299906508800,430096581734400,
%U 7741753102540800,147093162635059200,2941864569520128000
%N Numerators of unsigned columns of triangle A110504: a(n) = n!*A110504(n,0) = (-1)^k*n!*A110504(n+k,k) for all k >= 0.
%C Triangle A110504 equals the matrix logarithm of triangle A110503.
%C Triangle A110503 shifts one column left under matrix inverse.
%C Lim_{n->infinity} a(n)/n! = Pi*2*sqrt(3)/9 = 1.209199576...
%H Vaclav Kotesovec, <a href="/A110505/b110505.txt">Table of n, a(n) for n = 0..440</a>
%F E.g.f.: (2+x-x^2)/(2*(1-x)) * arccos(1-x^2/2) / sqrt(1-x^2/4).
%F E.g.f. A(x) satisfies:
%F (1) A(x)*A(-x) = -arccos(1-1/2*x^2)^2 = Sum_{n>=0} -x^(2*n+2)/( C(2*n+1, n)*(n+1)^2 ).
%F (2) 1/(1-x) = Sum_{n>=1} A(x)^floor((n+1)/2) * A(-x)^floor(n/2)/n!.
%F a(2*n+1) = (2*n+1)!*(1 + Sum_{k=1..n} (1/binomial(2*k+1, k))/(k+1)).
%F a(2*n+2) = (2*n+2)!*(1 + 1/2 - Sum_{k=1..n} 1/binomial(2*k+2, k)/k) = n!*(1 + 1/2 - 1/3 + 1/12 - 1/20 + 1/60 - 1/105 + 1/280 -+ ...).
%F Recurrence: 4*a(n) = 2*(2*n-1)*a(n-1) + (n-2)*(n+1)*a(n-2) - (n-3)*(n-2)*n*a(n-3). - _Vaclav Kotesovec_, May 09 2014
%e E.g.f.: A(x) = x + 3*x^2/2! + 7*x^3/3! + 30*x^4/4! + 144*x^5/5! + 876*x^6/6! + ...
%e where A(x) satisfies: A(x)*A(-x) = -arccos(1-1/2*x^2)^2, and
%e arccos(1-1/2*x^2)^2 = Sum_{n>=0} x^(2*n+2)/( C(2*n+1, n)*(n+1)^2 ) = x^2 + 1/12*x^4 + 1/90*x^6 + 1/560*x^8 + 1/3150*x^10 + ...
%o (PARI) /* From relation to unsigned columns of triangle A110504: */
%o {a(n)=local(M=matrix(n+1,n+1,r,c,if(r>=c, if(r==c || c%2==1,1,if(r%2==0 && r==c+2,-2,-1))))); n!*sum(i=1,#M,-(M^0-M)^i/i)[n+1,1]}
%o for(n=0,30,print1(a(n),", "))
%o (PARI) /* As Partial Sums of Series: */
%o a(n)=if(n<1,0,n!*(1+sum(n=2,n,(-1)^n/(binomial(n-2,n\2-1)*n*(n-1)/((n+1)\2)))))
%o for(n=0,30,print1(a(n),", "))
%Y Cf. A110503 (triangular matrix), A110504 (matrix logarithm), A002544.
%K frac,nonn
%O 0,3
%A _Paul D. Hanna_, Jul 23 2005