Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #49 Aug 01 2024 18:51:40
%S 1,3,40,1260,72576,6652800,889574400,163459296000,39520825344000,
%T 12164510040883200,4644631106519040000,2154334728240414720000,
%U 1193170003333152768000000,777776389315596582912000000,589450799582646796969574400000,513927415886120176107847680000000
%N a(n) = (2*n + 1)!/(n + 1).
%C Convolution of (-1)^n*n! and n! with interpolated zeros suppressed.
%C Denominator of absolute value of coefficient of 1/(x+n^2) in the partial fraction decomposition of 1/(x+1)*1/(x+4)*..*1/(x+n^2). - Joris Roos (jorisr(AT)gmx.de), Aug 07 2009
%C With offset = 1: a(n) is the number of permutations of {1,2,...,2n} composed of two cycles of length n. - _Geoffrey Critzer_, Nov 11 2012
%H Alois P. Heinz, <a href="/A110468/b110468.txt">Table of n, a(n) for n = 0..200</a>
%F E.g.f.: log((1-x)*(1+x))/(-x).
%F a(n) = (2*n)!*Sum_{k = 0..2*n} (-1)^k/binomial(2*n, k).
%F a(n) = Sum_{k = 0..2*n} k!*(-1)^k*(2*n-k)!.
%F Sum_{n>=0} 1/a(n) = e/2. - _Franz Vrabec_, Jan 17 2008
%F (n+1)*a(n) + 2*(-n^2)*(2*n+1)*a(n-1) = 0. - _R. J. Mathar_, Nov 15 2012
%F a(n) = Product_{i=1..n} (n+1-i)*(n+1+i). - _Vaclav Kotesovec_, Oct 21 2014
%F a(n) = A145877(2*n+2, n+1). - _Alois P. Heinz_, Apr 21 2017
%F a(n) = A346085(2*n+2, n+1). - _Alois P. Heinz_, Jul 04 2021
%F Sum_{n>=0} (-1)^n/a(n) = (cos(1) + sin(1))/2 = (1/2) * A143623. - _Amiram Eldar_, Feb 08 2022
%F a(p-1) == 1 (mod p), p a prime. - _Peter Bala_, Jul 29 2024
%t Table[(2n)!/(2n^2),{n,1,20}] (* _Geoffrey Critzer_, Nov 11 2012 *)
%o (PARI) for(n=0,50, print1((2*n+1)!/(n+1), ", ")) \\ _G. C. Greubel_, Aug 28 2017
%Y Cf. A094310, A143623, A145877, A202768, A346085.
%K easy,nonn
%O 0,2
%A _Paul Barry_, Jul 21 2005
%E Simpler definition from _Robert Israel_, Jul 20 2006