login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (-16-7*x+6*x^2+28*x^3+8*x^4) / ((x-1)*(x^2+x+1)*(4*x^2-8*x+1)).
2

%I #9 Sep 11 2019 15:51:44

%S 16,135,1010,7528,56183,419346,3130024,23362807,174382354,1301607592,

%T 9715331319,72516220178,541268436136,4040082608375,30155587122450,

%U 225084366546088,1680052583878903,12540083204846866,93600455303259304

%N Expansion of (-16-7*x+6*x^2+28*x^3+8*x^4) / ((x-1)*(x^2+x+1)*(4*x^2-8*x+1)).

%H Colin Barker, <a href="/A110274/b110274.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (8,-4,1,-8,4).

%F a(n) = 8*a(n-1) - 4*a(n-2) + a(n-3) - 8*a(n-4) + 4*a(n-5) for n>4. - _Colin Barker_, May 12 2019

%F 117*a(n) = -47*A049347(n) -67*A049347(n-1) + 8*(209*A099156(n+1)+274*A099156(n)) +247. - _R. J. Mathar_, Sep 11 2019

%p seriestolist(series((-16-7*x+6*x^2+28*x^3+8*x^4)/((x-1)*(x^2+x+1)*(4*x^2-8*x+1)), x=0,25)); -or- Floretion Algebra Multiplication Program, FAMP Code: bisection of 4tessigcyczapsumseq[A*B] with A = - 'j + 'k - 'ii' - 'ij' - 'ik' and B = + .5'i + .5'j - .5'k + .5i' - .5j' + .5k' + .5'ij' + .5'ik' - .5'ji' - .5'ki'; Sumtype is set to: sum[(Y[0], Y[1], Y[2]),mod(3)

%o (PARI) Vec((16 + 7*x - 6*x^2 - 28*x^3 - 8*x^4) / ((1 - x)*(1 + x + x^2)*(1 - 8*x + 4*x^2)) + O(x^20)) \\ _Colin Barker_, May 12 2019

%Y Cf. A110275.

%K easy,nonn

%O 0,1

%A _Creighton Dement_, Jul 18 2005