The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110211 a(n+3) = 6*a(n) - 5*a(n+2), a(0) = -1, a(1) = 3, a(2) = -15. 3
 -1, 3, -15, 69, -327, 1545, -7311, 34593, -163695, 774609, -3665487, 17345265, -82078671, 388400433, -1837930575, 8697180849, -41155501647, 194749924785, -921566538831, 4360899684273, -20635998872655, 97650595130289, -462087577545807, 2186621894493105 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Index entries for linear recurrences with constant coefficients, signature (-5, 0, 6). FORMULA G.f. (1+2*x)/((x-1)*(6*x^2+6*x+1)) a(n)=(9-3*Sqrt[3]+(-3-Sqrt[3])^n*(-4+Sqrt[3])+(-3+Sqrt[3])^n*(-5+2*Sqrt[3]))/(13*(-3+Sqrt[3])) [From Harvey P. Dale, Mar 28 2012] MAPLE seriestolist(series((1+2*x)/((x-1)*(6*x^2+6*x+1)), x=0, 25)); -or- Floretion Algebra Multiplication Program, FAMP Code: 1kbasesumseq[A*B] with A = + 'i + 'ii' + 'ij' + 'ik' and B = + .5'i - .5'j + .5'k + .5i' + .5j' - .5k' - .5'ij' - .5'ik' + .5'ji' + .5'ki' Sumtype is set to: sum[(Y[0], Y[1], Y[2]), mod(3) MATHEMATICA LinearRecurrence[{-5, 0, 6}, {-1, 3, -15}, 30] (* Harvey P. Dale, Mar 28 2012 *) CROSSREFS Cf. A110210, A110212, A110213. Sequence in context: A213451 A224749 A122558 * A167874 A318967 A277370 Adjacent sequences:  A110208 A110209 A110210 * A110212 A110213 A110214 KEYWORD easy,sign AUTHOR Creighton Dement, Jul 16 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 1 17:21 EDT 2021. Contains 346402 sequences. (Running on oeis4.)