login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110003
n followed by n^3 followed by n^2 followed by n^4.
1
1, 1, 1, 1, 2, 8, 4, 16, 3, 27, 9, 81, 4, 64, 16, 256, 5, 125, 25, 625, 6, 216, 36, 1296, 7, 343, 49, 2401, 8, 512, 64, 4096, 9, 729, 81, 6561, 10, 1000, 100, 10000, 11, 1331, 121, 14641, 12, 1728, 144, 20736, 13, 2197, 169, 28561, 14, 2744, 196, 38416, 15, 3375
OFFSET
1,5
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 5, 0, 0, 0, -10, 0, 0, 0, 10, 0, 0, 0, -5, 0, 0, 0, 1).
FORMULA
a(n) = (2*n+3-(-1)^n+2*(-1)^((2*n+5-(-1)^n)/4))*(n^3+4*n^2+32*n+96+(n^3+4*n^2-64)*(-1)^n-(n^3-4*n^2-64)*(-1)^((2*n+5-(-1)^n)/4)+(n^3-4*n^2-32*n+32)*(-1)^((2*n+7+(-1)^n)/4))/2048. - Luce ETIENNE, Sep 01 2016
From Chai Wah Wu, Jan 11 2020: (Start)
a(n) = 5*a(n-4) - 10*a(n-8) + 10*a(n-12) - 5*a(n-16) + a(n-20) for n > 20.
G.f.: x*(-x^15 - x^14 + x^13 + x^12 - 11*x^11 + x^10 + 3*x^9 - 3*x^8 - 11*x^7 + x^6 - 3*x^5 + 3*x^4 - x^3 - x^2 - x - 1)/((x - 1)^5*(x + 1)^5*(x^2 + 1)^5). (End)
MATHEMATICA
Table[{n, n^3, n^2, n^4}, {n, 1, 15}] // Flatten (* Jean-François Alcover, Sep 01 2016 *)
PROG
(Magma) &cat[[n, n^3, n^2, n^4]: n in [1..15]]; // Bruno Berselli, Sep 01 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Mohammad K. Azarian, Sep 02 2005
STATUS
approved