login
Sum of primes between n and n^2.
1

%I #7 Apr 02 2024 10:45:05

%S 0,5,15,36,95,150,318,484,774,1043,1576,2099,2886,3790,4620,6040,7941,

%T 9465,11541,13810,16763,19982,23515,26840,32253,37461,42368,48394,

%U 55737,62668,70112,80029,89512,100678,111427,124051,135954,148630,166354

%N Sum of primes between n and n^2.

%e a(3) = 15 because 3, 5 and 7 are the A073882(3) = 3 primes in the interval from 3 to 3^2 inclusive and 3 + 5 + 7 = 15.

%t Join[{0},Table[Sum[Prime[i],{i,If[PrimeQ[n],PrimePi[n],PrimePi[n]+1],PrimePi[n^2]}],{n,2,39}]] (* _James C. McMahon_, Apr 02 2024 *)

%o (PARI) for(n=1,50,print1(sum(k=n,n^2,if(isprime(k),k)),","))

%Y Cf. A109819 (product of same primes), A073882 (number of primes between n and n^2).

%K easy,nonn

%O 1,2

%A _Rick L. Shepherd_, Jul 02 2005