OFFSET
1,1
COMMENTS
Related to Prime(1^2) + prime(2^2) + ... + prime(n^2) (A109724).
FORMULA
(Prime[1^2])^2 + (prime[2^2])^2 + ... + (prime[n^2])^2. a(n+1) = a(n) + (A011757(n+1))^2.
EXAMPLE
a(1) = 4 because (prime[1^2])^2 = (prime[1])^2 = 2^2.
a(2) = 53 because (prime[1^2])^2 + (prime[2^2])^2 = 2^2 + 7^2 = 4 + 49 = 53 (which is prime).
a(3) = 582 because (prime[1^2])^2 + (prime[2^2])^2 + (prime[3^2])^2 = 2^2 + 7^2 + 23^2 = 582.
a(4) = 582 because (prime[1^2])^2 + (prime[2^2])^2 + (prime[3^2])^2 + (prime[4^2])^2 = 2^2 + 7^2 + 23^2 + 53^2 = 3391 (which is prime).
a(32) = a(31) + (prime[32^2])^2 = 345995122 + 8161^2 = 412597043 (which is prime).
a(34) = a(33) + (prime[34^2])^2 = 488932212 + 9341^2 = 576186493 (which is prime).
MATHEMATICA
Accumulate[Prime[Range[30]^2]^2] (* Harvey P. Dale, Mar 28 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Aug 15 2005
STATUS
approved