login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (x^2-x-1)*(x^3-x^2+x-2) / ((x-1)*(2*x-1)*(x^2+x+1)*(x^2+1)).
1

%I #13 Mar 13 2024 19:26:16

%S 2,5,6,14,31,59,118,238,475,951,1902,3802,7607,15215,30426,60854,

%T 121711,243419,486838,973678,1947355,3894711,7789422,15578842,

%U 31157687,62315375,124630746,249261494,498522991,997045979,1994091958,3988183918

%N Expansion of (x^2-x-1)*(x^3-x^2+x-2) / ((x-1)*(2*x-1)*(x^2+x+1)*(x^2+1)).

%C Floretion Algebra Multiplication Program, 2ibasesumseq[5'i + .5i' + .5'ii' + .5'jj' + .5'kk' + .5e], sumtype: default (ver. f). Note: Due to FAMP's limited ability to handle large numbers, it is unclear if 2ibasesumseq and (a(n)) continue to coincide for large n.

%H Colin Barker, <a href="/A109784/b109784.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,3,-2,1,-2).

%F a(n) = 2*a(n-1) - a(n-2) + 3*a(n-3) - 2*a(n-4) + a(n-5) - 2*a(n-6) for n>5. - _Colin Barker_, May 15 2019

%t LinearRecurrence[{2,-1,3,-2,1,-2},{2,5,6,14,31,59},40] (* _Harvey P. Dale_, Nov 28 2019 *)

%o (PARI) Vec((1 + x - x^2)*(2 - x + x^2 - x^3) / ((1 - x)*(1 - 2*x)*(1 + x^2)*(1 + x + x^2)) + O(x^40)) \\ _Colin Barker_, May 15 2019

%K nonn,easy

%O 0,1

%A _Creighton Dement_, Aug 14 2005