Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Mar 13 2024 19:26:36
%S -1,3,-6,11,-27,60,-141,337,-808,1943,-4687,11306,-27287,65869,
%T -159012,383877,-926753,2237366,-5401467,13040283,-31482014,76004289,
%U -183490573,442985412,-1069461373,2581908135,-6233277618,15048463343,-36330204279,87708871872,-211747947993
%N Expansion of (-1+x+2*x^2-6*x^3+x^4+x^5) / ((x-1)*(x^2-x+1)*(x^2-2*x-1)*(x+1)^2).
%C Floretion Algebra Multiplication Program, FAMP Code: 1tessumseq[A*C] with A = + .5'k + .5k' + .5'ii' + .5'jj' and C = - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki'; sumtype: sum[Y[15]] = sum[ * ]
%H Colin Barker, <a href="/A109781/b109781.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (-2,2,1,-3,2,2,-1).
%F a(n) = -2*a(n-1) + 2*a(n-2) + a(n-3) - 3*a(n-4) + 2*a(n-5) + 2*a(n-6) - a(n-7) for n>6. - _Colin Barker_, May 14 2019
%o (PARI) Vec(-(1 - x - 2*x^2 + 6*x^3 - x^4 - x^5) / ((1 - x)*(1 + x)^2*(1 + 2*x - x^2)*(1 - x + x^2)) + O(x^30)) \\ _Colin Barker_, May 14 2019
%K easy,sign
%O 0,2
%A _Creighton Dement_, Aug 13 2005