login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109777
G.f. = f(x), where f(x)^2 = o.g.f. for A088313 (with offset 0).
1
1, 1, 3, 15, 101, 829, 7891, 84735, 1009065, 13170841, 186798003, 2859068831, 46960097413, 823787983021, 15370572776091, 303929827526887, 6348320745774993, 139663855708967665, 3227812335094695171, 78180132507785056399, 1980181972528939129861, 52344600987011191983613
OFFSET
0,3
LINKS
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
EXAMPLE
The present sequence has g.f. f(x) = 1 + x + 3*x^2 + 15*x^3 + ...
A088313 [1,2,7,36,242,...] has e.g.f. = sinh(x/(1-x)) = x + x^2 + 7/6*x^3 + 3/2*x^4 + 241/120*x^5 + 65/24*x^6 + 18271/5040*x^7 + ... and (with offset 0) o.g.f. = 1 + 2*x^2 + 7*x^3 + 36*x^4 + ... = f(x)^2.
MATHEMATICA
nmax = 22;
f[x_] = Sqrt[Sum[SeriesCoefficient[Sinh[x/(1-x)], {x, 0, n}] n! x^n, {n, 0, nmax}]] + O[x]^nmax // Normal;
List @@ f[x] /. x -> 1 (* Jean-François Alcover, Oct 08 2018 *)
CROSSREFS
Sequence in context: A074521 A074536 A152093 * A242003 A265164 A348793
KEYWORD
nonn
AUTHOR
STATUS
approved