login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of x/((4*x-1)*(2*x-1)*(x+1)).
2

%I #17 Mar 12 2024 14:51:33

%S 0,1,5,23,97,399,1617,6511,26129,104687,419089,1677039,6709521,

%T 26840815,107368721,429485807,1717965073,6871903983,27487703313,

%U 109950988015,439804301585,1759217905391,7036873019665,28147494874863

%N Expansion of x/((4*x-1)*(2*x-1)*(x+1)).

%C In reference to the program code given, 1baseksumseq[C*D] = A001045 (Jacobsthal sequence, disregard signs).

%C Floretion Algebra Multiplication Program, FAMP Code: 1basejsumseq[C*D] with C = - 'j + 'k - j' + k' - 'ii' - 'ij' - 'ik' - 'ji' - 'ki' and D = + .5'i + .5'k - .5j' - .5k' + .5'ii' + .5'jj' + .5'jk' + .5'ki'; sumtype: sum[Y[15]] = sum[Y[ * ]], disregard signs

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,-2,-8).

%F a(n) = 5*a(n-1) - 2*a(n-2) - 8*a(n-3), n >= 3.

%F a(n) = (1/15)*(6*4^n-5*2^n-(-1)^n).

%F a(n+1) + a(n) = A006516(n+1).

%F a(n+2) - a(n) = A010036(n+1).

%t CoefficientList[Series[x/((4x-1)(2x-1)(x+1)),{x,0,30}],x] (* or *)

%t LinearRecurrence[{5,-2,-8},{0,1,5},30] (* _Harvey P. Dale_, Jan 02 2013 *)

%Y Cf. A001045, A006516, A010036, A006095.

%K easy,nonn

%O 0,3

%A _Creighton Dement_, Aug 13 2005