login
A109760
Composite n such that binomial(5*n,n) == 5^n (mod n).
2
4, 365, 400, 685, 3200, 6400, 12550, 12800, 16525, 25600, 51200, 225125, 70463125, 271094125, 431434441
OFFSET
1,1
COMMENTS
No other terms below 10^9.
EXAMPLE
4 is a term because binomial(5*4, 4) = 4845, 5^4 = 625 and 4845 mod 4 = 625 mod 4 = 1.
MATHEMATICA
Do[If[ !PrimeQ[n], If[Mod[Binomial[5*n, n], n] == Mod[5^n, n], Print[n]]], {n, 1, 50000}]
CROSSREFS
Cf. A080469.
Sequence in context: A366469 A051955 A177114 * A051181 A326996 A154682
KEYWORD
hard,more,nonn
AUTHOR
Ryan Propper, Aug 12 2005
EXTENSIONS
a(12) from D. S. McNeil, Mar 15 2009
225125 from Max Alekseyev, Sep 13 2009
Three more terms from Max Alekseyev, Nov 06 2009
STATUS
approved