login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n into parts each equal to 5 mod 6.
8

%I #36 Mar 08 2022 15:37:11

%S 1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,1,1,1,0,0,1,1,2,1,0,1,1,2,2,1,1,1,2,3,

%T 3,2,1,2,3,4,4,2,2,3,5,6,5,3,3,5,7,8,6,4,5,8,10,10,8,6,8,11,13,13,10,

%U 9,12,15,18,17,14,13,16,21,23,22,18,18,23,28,31,28,24,25,31,38,39,36,32,34

%N Number of partitions of n into parts each equal to 5 mod 6.

%H Vaclav Kotesovec, <a href="/A109702/b109702.txt">Table of n, a(n) for n = 0..10000</a>

%F G.f.: 1/product(1-x^(5+6j),j=0..infinity). - _Emeric Deutsch_, Apr 14 2006

%F a(n) ~ Gamma(5/6) * exp(Pi*sqrt(n)/3) / (4 * sqrt(3) * Pi^(1/6) * n^(11/12)) * (1 - (55/(24*Pi) + Pi/144) / sqrt(n)). - _Vaclav Kotesovec_, Feb 27 2015, extended Jan 24 2017

%F a(n) = (1/n)*Sum_{k=1..n} A284104(k)*a(n-k), a(0) = 1. - _Seiichi Manyama_, Mar 20 2017

%F Euler transform of period 6 sequence [ 0, 0, 0, 0, 1, 0, ...]. - _Kevin T. Acres_, Apr 28 2018

%e a(40)=4 since 40 = 35+5 = 29+11 = 23+17 = 5+5+5+5+5+5+5+5.

%p g:=1/product(1-x^(5+6*j),j=0..20): gser:=series(g,x=0,92): seq(coeff(gser,x,n),n=0..89); # _Emeric Deutsch_, Apr 14 2006

%t nmax=100; CoefficientList[Series[Product[1/(1-x^(6*k+5)),{k, 0, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Feb 27 2015 *)

%t Table[Count[IntegerPartitions[n],_?(Union[Mod[#,6]]=={5}&)],{n,0,90}] (* _Harvey P. Dale_, Mar 08 2022 *)

%Y Cf. A284104.

%Y Cf. similar sequences of number of partitions of n into parts congruent to m-1 mod m: A000009 (m=2), A035386 (m=3), A035462 (m=4), A109700 (m=5), this sequence (m=6), A109708 (m=7).

%K nonn

%O 0,23

%A _Erich Friedman_, Aug 07 2005

%E Changed offset to 0 and added a(0)=1 by _Vaclav Kotesovec_, Feb 27 2015