Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Mar 15 2021 03:40:34
%S 3,3,9,0,6,4,2,0,0,5,5,7,2,5,0,3,9,1,6,1,4,2,5,9,5,6,6,3,0,0,2,6,3,0,
%T 7,9,3,7,4,0,5,3,7,3,8,1,2,1,4,4,7,1,6,9,1,1,8,0,7,3,9,8,1,5,6,8,5,7,
%U 3,8,1,3,1,1,1,7,7,6,3,3,2,1,3,6,5,0,4,1,0,2,4,4,4,9,5,2,3,7,4,2,9,8,2,5,7
%N Decimal expansion of Sum_{n>=1} 1/phi(n)^2.
%C The logarithm of the value can be expanded in a series Sum_{j>=2} c(j)*P(j) = P(2) + 2*P(3) + (7/2)*P(4) + ... where P(.) is the prime zeta function. The partial sums of the series are a slowly oscillating function of the upper limit of j, from which the bracketing interval [3.390642005572503655..., 3.390642005572504756...] for the constant can be computed. - _R. J. Mathar_, Feb 03 2009
%C Sum_{n>=1} 1/phi(n)^k is convergent iff k > 1 (reference Monier). - _Bernard Schott_, Dec 13 2020
%D Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.2.21, pp. 281 and 294.
%F Equals Product_p Sum_{k>=0} 1/phi(p^k)^2 = Product_p (1 + p^2/((p-1)^2*(p^2-1))).
%F Equals Sum{n>=1} 1/A127473(n). - _Amiram Eldar_, Mar 15 2021
%e 3.39064200557250391614259566300263079374053738121447169118...
%t $MaxExtraPrecision = 1000; f[p_] := (1 + p^2/((p - 1)^2*(p^2 - 1))); Do[cc = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]]; Print[f[2] * Exp[N[Sum[Indexed[cc, n]*(PrimeZetaP[n] - 1/2^n), {n, 2, m}], 120]]], {m, 100, 1000, 100}] (* _Vaclav Kotesovec_, Jun 25 2020 *)
%o (PARI) my(N=1000000000); prodeuler(p=2,N,1.+p^2/((p-1)^2*(p^2-1)))*(1+1/(N*log(N)))
%o (PARI) prodeulerrat(1 + p^2/((p-1)^2*(p^2-1))) \\ _Amiram Eldar_, Mar 15 2021
%Y Cf. A000010, A065484, A127473, A335818.
%K nonn,cons
%O 1,1
%A _Franklin T. Adams-Watters_, Aug 07 2005
%E Four more digits from _R. J. Mathar_, Feb 03 2009, 25 more Dec 18 2010
%E More digits from _Vaclav Kotesovec_, Jun 25 2020