login
A109660
Numbers n such that the sum of the digits of n^phi(n) is divisible by n.
0
1, 2, 3, 7, 9, 15, 18, 27, 52, 72, 261, 360, 400, 3932, 4418, 7046, 7938, 8888, 9162, 9363, 9606, 9738, 10083, 10809, 11970, 13958, 23571, 28384, 42159, 51515
OFFSET
1,2
EXAMPLE
The digits of 8888^phi(8888) sum to 71104 and 71104 is divisible by 8888, so 8888 is in the sequence.
MATHEMATICA
Do[s = n^EulerPhi[n]; k = Plus @@ IntegerDigits[s]; If[Mod[k, n] == 0, Print[n]], {n, 1, 10000}]
CROSSREFS
Sequence in context: A294283 A294122 A211539 * A236544 A343198 A075855
KEYWORD
base,nonn
AUTHOR
Ryan Propper, Aug 06 2005
EXTENSIONS
More terms from Emeric Deutsch, Feb 05 2006
STATUS
approved