login
A109586
a(n)=prime(n)^b(n), where b(n) is the Hofstadter Q-sequence: b(1)= b(2)= 1; b(n)=b(n-b(n-1))+b(n-b(n-2)) for n > 2 (A005185).
0
2, 3, 25, 343, 1331, 28561, 1419857, 2476099, 148035889, 594823321, 887503681, 3512479453921, 7984925229121, 11688200277601, 52599132235830049, 3299763591802133, 511116753300641401, 43513917611435838661
OFFSET
0,1
MAPLE
b:=proc(n) option remember; if n<=2 then 1 else b(n-b(n-1))+b(n-b(n-2)): fi: end: seq(ithprime(n)^b(n), n=1..20);
MATHEMATICA
digits = 25 Hofstadter[n_Integer?Positive] := Hofstadter[n] = Hofstadter[n - Hofstadter[n - 1]] + Hofstadter[n - Hofstadter[n - 2]] Hofstadter[0] = Hofstadter[1] = 1 a = Table[Prime[n + 1]^Hofstadter[n], {n, 0, digits - 1}]
CROSSREFS
Cf. A005185.
Sequence in context: A226018 A094998 A208203 * A127231 A060371 A358390
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Jun 29 2005
STATUS
approved