login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the (1,2)-entry of the n-th power of the 2 X 2 matrix [0,1;n-1,2(n-1)].
3

%I #10 Oct 19 2021 21:02:34

%S 1,2,18,252,4880,120750,3639384,129365880,5298720768,245738908890,

%T 12728860100000,728372947109940,45631105330876416,3106354479972026374,

%U 228329428483544787840,18022862954171193750000,1520481402538463932186624,136531862779634547726146994

%N a(n) is the (1,2)-entry of the n-th power of the 2 X 2 matrix [0,1;n-1,2(n-1)].

%C The (1,2)-entry of the n-th power of the 2 X 2 matrix [0,1;1,1] is the Fibonacci number A000045(n).

%H Robert Israel, <a href="/A109517/b109517.txt">Table of n, a(n) for n = 1..351</a>

%F For n > 1, a(n) = ((n - 1 + sqrt(n*(n - 1)))^n - (n - 1 - sqrt(n*(n - 1)))^n)/(2*sqrt(n*(n - 1))). - _Robert Israel_, Oct 19 2021

%e a(4)=252 because if M is the 2 X 2 matrix [0,1;3,6], then M^4 is the 2 X 2 matrix [117,252;756;1629].

%p with(linalg): a:=proc(n) local A,k: A[1]:=matrix(2,2,[0,1,n-1,2*(n-1)]): for k from 2 to n do A[k]:=multiply(A[k-1],A[1]) od: A[n][1,2] end: seq(a(n),n=1..19);

%p # second Maple program:

%p a:= n-> (<<0|1>, <n-1|2*n-2>>^n)[1, 2]:

%p seq(a(n), n=1..18); # _Alois P. Heinz_, Oct 19 2021

%t M[n_] = If[n > 1, MatrixPower[{{0, 1}, {n - 1, 2*(n - 1)}}, n], {{0, 1}, {1, 1}}] a = Table[M[n][[1, 2]], {n, 1, 50}]

%Y Cf. A000045, A000166.

%K nonn

%O 1,2

%A _Roger L. Bagula_, Jun 16 2005