OFFSET
1,2
COMMENTS
REFERENCES
Yoshihide Igarashi, An improved lower bound on the maximum number of prime implicants, Transactions of the IECE of Japan, E62 (1979), 389-394.
A. P. Vikulin, Otsenka chisla kon"iunktsii v sokrashchennyh DNF [An estimate of the number of conjuncts in reduced disjunctive normal forms], Problemy Kibernetiki 29 (1974), 151-166.
EXAMPLE
a(10) = 4300 because the symmetric function S_{1,2,4,5,6,7,9,10}(x_1,...,x_{10}) has 90+4200+10 prime implicants.
MATHEMATICA
b[m_, n_] := If[m < 0, 0, Multinomial[Floor[m/2], Ceiling[m/2], n - m] + b[Ceiling[m/2] - 2, n]]; a[n_] := Multinomial[Floor[n/3], Floor[(n + 1)/3], Floor[(n + 2)/3]] + b[Floor[(n - 4)/3], n] + b[Floor[(n - 5)/3], n]; Table[a[n], {n, 35}]
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Don Knuth, Aug 25 2005
EXTENSIONS
Extended by T. D. Noe using the Mma program, Jan 15 2012
STATUS
approved