OFFSET
0,3
COMMENTS
Triangular matrix T=A109152 satisfies: T(n,k) = [T^2](n-1,k) for n>k+1>=1, with T(n,n) = 1 and T(n+1,n) = n+1 for n>=0.
FORMULA
T^(m+1) = SHIFT_UP(T^m - T^(m-1)) - D*T^(m-1) for all m where diagonal matrix D = [0, 1, 2, 3, ...] and SHIFT_UP shifts each column up 1 row.
PROG
(PARI) {a(n)=local(M=matrix(n+1, n+1)); M=M^0; for(i=1, n, M=matrix(n+1, n+1, r, c, if(r>=c, if(r==c, 1, if(r==c+1, c, (M^2)[r-1, c]))))); return(M[n+1, 1])}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 20 2005
STATUS
approved