Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #16 Dec 20 2021 19:00:45
%S 1,2,4,6,10,11,12,14,15,17,18,20,21,23,24,26,27,29,30,32,33,35,36,38,
%T 41,42,44,45,47,50,51,53,54,56,59,60,62,63,65,68,69,71,72,74,77,78,80,
%U 81,83,86,87,90,92,95,96,99,101,103,105,109,110,112,114,118,121,123,127
%N Numbers k such that (sum of digits)*(number of digits) + 1 is prime.
%C By Dirichlet's theorem on primes in arithmetic progressions, for any positive integer k this sequence has infinitely many terms of the form k*10^m. - _Robert Israel_, Dec 19 2021
%H Robert Israel, <a href="/A109133/b109133.txt">Table of n, a(n) for n = 1..10000</a>
%e 1234 is a term because 4*(1+2+3+4)+1 = 41.
%p filter:= proc(n) local L;
%p L:= convert(n,base,10);
%p isprime(convert(L,`+`)*nops(L)+1)
%p end proc:
%p select(filter, [$1..200]); # _Robert Israel_, Dec 19 2021
%t Select[Range[130],PrimeQ[Total[IntegerDigits[#]]IntegerLength[ #]+ 1]&] (* _Harvey P. Dale_, Jul 12 2011 *)
%o (Python)
%o from sympy import isprime
%o def ok(n): s = str(n); return isprime(sum(map(int, s))*len(s) + 1)
%o print([k for k in range(128) if ok(k)]) # _Michael S. Branicky_, Dec 19 2021
%Y Cf. A110805.
%K base,easy,nonn
%O 1,2
%A _Jason Earls_, Aug 17 2005