login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = 5*a(n-1) - 3*a(n-2), a(0)=1, a(1)=6.
3

%I #20 Jul 26 2022 14:24:06

%S 1,6,27,117,504,2169,9333,40158,172791,743481,3199032,13764717,

%T 59226489,254838294,1096512003,4718045133,20300689656,87349312881,

%U 375844495437,1617174538542,6958339206399,29940172416369,128825844462648

%N a(n) = 5*a(n-1) - 3*a(n-2), a(0)=1, a(1)=6.

%C Kekulé numbers for certain benzenoids.

%D S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 302, P_{11}).

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,-3).

%F a(n) = ((sqrt(13) + 7)*((5 + sqrt(13))/2)^n + (sqrt(13) - 7)*((5 - sqrt(13))/2)^n)/(2*sqrt(13)).

%F G.f.: (1+z)/(1 - 5z + 3z^2).

%F a(n) = A116415(n)+A116415(n-1). - _R. J. Mathar_, Jul 26 2022

%p a[0]:=1: a[1]:=6: for n from 2 to 26 do a[n]:=5*a[n-1]-3*a[n-2] od: seq(a[n],n=0..26);

%t LinearRecurrence[{5,-3},{1,6},30] (* _Harvey P. Dale_, Dec 03 2012 *)

%K nonn

%O 0,2

%A _Emeric Deutsch_, Jun 19 2005