login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (1/sqrt(26))((5+sqrt(26))^(n+1)-(5-sqrt(26))^(n+1)).
0

%I #9 Mar 16 2017 14:36:31

%S 2,20,202,2040,20602,208060,2101202,21220080,214302002,2164240100,

%T 21856703002,220731270120,2229169404202,22512425312140,

%U 227353422525602,2296046650568160,23187819928207202,234174245932640180

%N a(n) = (1/sqrt(26))((5+sqrt(26))^(n+1)-(5-sqrt(26))^(n+1)).

%C a(n) = 2*A041041(n). Kekulé numbers for certain benzenoids.

%D S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 284, K{Q(n)}).

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10, 1).

%F G.f.: 2/(1-10z-z^2).

%p a:=n->(1/sqrt(26))*((5+sqrt(26))^(n+1)-(5-sqrt(26))^(n+1)): seq(expand(a(n)),n=0..20);

%Y Cf. A041041.

%K nonn

%O 0,1

%A _Emeric Deutsch_, Jun 19 2005