login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109077
Triangle read by rows: T(n,k) is the number of symmetric Dyck paths of semilength n and having k hills (i.e., peaks at level 1).
1
1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 4, 0, 1, 0, 1, 6, 1, 2, 0, 0, 1, 13, 0, 5, 0, 1, 0, 1, 22, 2, 6, 2, 2, 0, 0, 1, 46, 0, 16, 0, 6, 0, 1, 0, 1, 80, 6, 24, 4, 6, 3, 2, 0, 0, 1, 166, 0, 58, 0, 19, 0, 7, 0, 1, 0, 1, 296, 18, 90, 13, 26, 6, 6, 4, 2, 0, 0, 1, 610, 0, 211, 0, 71, 0, 22, 0, 8, 0, 1, 0, 1, 1106
OFFSET
0,7
COMMENTS
Column 0 yields A109078.
T(2n,1)=0, T(2n-1,1) = A000957(n) (the Fine numbers).
FORMULA
G.f.: 2(1 + (t-1)z(1-2z) + q(1 - z + tz))/((1-2z+q)(1+2z^2-2t^2*z^2+q)), where q = sqrt(1 - 4z^2).
EXAMPLE
T(5,2)=2 because we have uduududdud and uduuudddud, where u=(1,1), d=(1,-1).
Triangle begins:
1;
0, 1;
1, 0, 1;
2, 0, 0, 1;
4, 0, 1, 0, 1;
6, 1, 2, 0, 0, 1;
MAPLE
G:=-2*(z+z*sqrt(1-4*z^2)-2*z^2-z*t-1-sqrt(1-4*z^2)+2*z^2*t-z*t*sqrt(1-4*z^2))/(-1-sqrt(1-4*z^2)+2*z)/(-1-sqrt(1-4*z^2)-2*z^2+2*z^2*t^2): Gser:=simplify(series(G, z=0, 17)): P[0]:=1: for n from 1 to 13 do P[n]:=coeff(Gser, z^n) od: for n from 0 to 13 do seq(coeff(t*P[n], t^k), k=1..n+1) od; # yields sequence in triangular form
CROSSREFS
Sequence in context: A091866 A168511 A111146 * A378178 A355916 A309023
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jun 17 2005
STATUS
approved