The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A109077 Triangle read by rows: T(n,k) is the number of symmetric Dyck paths of semilength n and having k hills (i.e., peaks at level 1). 1
 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 4, 0, 1, 0, 1, 6, 1, 2, 0, 0, 1, 13, 0, 5, 0, 1, 0, 1, 22, 2, 6, 2, 2, 0, 0, 1, 46, 0, 16, 0, 6, 0, 1, 0, 1, 80, 6, 24, 4, 6, 3, 2, 0, 0, 1, 166, 0, 58, 0, 19, 0, 7, 0, 1, 0, 1, 296, 18, 90, 13, 26, 6, 6, 4, 2, 0, 0, 1, 610, 0, 211, 0, 71, 0, 22, 0, 8, 0, 1, 0, 1, 1106 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS Column 0 yields A109078. T(2n,1)=0, T(2n-1,1) = A000957(n) (the Fine numbers). LINKS Table of n, a(n) for n=0..91. FORMULA G.f.: 2(1 + (t-1)z(1-2z) + q(1 - z + tz))/((1-2z+q)(1+2z^2-2t^2*z^2+q)), where q = sqrt(1 - 4z^2). EXAMPLE T(5,2)=2 because we have uduududdud and uduuudddud, where u=(1,1), d=(1,-1). Triangle begins: 1; 0, 1; 1, 0, 1; 2, 0, 0, 1; 4, 0, 1, 0, 1; 6, 1, 2, 0, 0, 1; MAPLE G:=-2*(z+z*sqrt(1-4*z^2)-2*z^2-z*t-1-sqrt(1-4*z^2)+2*z^2*t-z*t*sqrt(1-4*z^2))/(-1-sqrt(1-4*z^2)+2*z)/(-1-sqrt(1-4*z^2)-2*z^2+2*z^2*t^2): Gser:=simplify(series(G, z=0, 17)): P[0]:=1: for n from 1 to 13 do P[n]:=coeff(Gser, z^n) od: for n from 0 to 13 do seq(coeff(t*P[n], t^k), k=1..n+1) od; # yields sequence in triangular form CROSSREFS Cf. A000957, A109078. Sequence in context: A091866 A168511 A111146 * A355916 A309023 A353429 Adjacent sequences: A109074 A109075 A109076 * A109078 A109079 A109080 KEYWORD nonn,tabl AUTHOR Emeric Deutsch, Jun 17 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 13 09:13 EDT 2024. Contains 374274 sequences. (Running on oeis4.)