Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Nov 26 2022 04:02:35
%S 0,6,6,6,12,30,6,42,24,18,30,66,12,78,42,30,48,102,18,114,60,42,66,
%T 138,24,150,78,54,84,174,30,186,96,66,102,210,36,222,114,78,120,246,
%U 42,258,132,90,138,282,48,294,150,102,156,318,54,330,168,114,174,354
%N a(n) = lcm(n, 6).
%H Amiram Eldar, <a href="/A109047/b109047.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,2,0,0,0,0,0,-1).
%H <a href="/index/Lc#lcm">Index entries for sequences related to lcm's</a>.
%F a(n) = n*6/gcd(n, 6).
%F From _R. J. Mathar_, Apr 18 2011: (Start)
%F a(n) = 2*a(n-6) - a(n-12) = 6*A060789(n) = 6*n/A089128(n).
%F G.f.: 6*x*(1+x+x^2+2*x^3+5*x^4+x^5+5*x^6+2*x^7+x^8+x^9+x^10) / ( (x-1)^2*(1+x)^2*(1+x+x^2)^2*(x^2-x+1)^2 ). (End)
%F Sum_{k=1..n} a(k) ~ (7/4) * n^2. - _Amiram Eldar_, Nov 26 2022
%t LCM[Range[0,60],6] (* _Harvey P. Dale_, Nov 20 2022 *)
%o (Sage) [lcm(n,6)for n in range(0, 60)] # _Zerinvary Lajos_, Jun 07 2009
%o (Magma) [Lcm(n,6): n in [0..100]]; // _Vincenzo Librandi_, Apr 18 2011
%Y Cf. A060789, A089128, A109042.
%K nonn,easy
%O 0,2
%A _Mitch Harris_, Jun 18 2005