login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109039
Expansion of eta(q) * eta(q^3) * (eta(q^4) * eta(q^6) / eta(q^12))^2 in powers of q.
3
1, -1, -1, -1, -1, 4, -1, 6, -1, -1, 4, -12, -1, -14, 6, 4, -1, 16, -1, 18, 4, 6, -12, -24, -1, -21, -14, -1, 6, 28, 4, 30, -1, -12, 16, -24, -1, -38, 18, -14, 4, 40, 6, 42, -12, 4, -24, -48, -1, -43, -21, 16, -14, 52, -1, 48, 6, 18, 28, -60, 4, -62, 30, 6
OFFSET
0,6
COMMENTS
Number 25 of the 74 eta-quotients listed in Table I of Martin (1996).
LINKS
Yves Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
FORMULA
Euler transform of period 12 sequence [ -1, -1, -2, -3, -1, -4, -1, -3, -2, -1, -1, -4, ...].
G.f.: Product_{k>0} (1 - x^k) * (1 - x^(3*k)) * (1 - x^(4*k))^2 / (1 + x^(6*k))^2.
a(n) = -A109040(n) unless n=0. a(2*n) = a(3*n) = a(n).
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 12^(3/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A124815. - Michael Somos, May 18 2015
Sum_{k=1..n} abs(a(k)) ~ c * n^2, where c = Pi^2/(24*sqrt(3)) = 0.237425... . - Amiram Eldar, Jan 29 2024
EXAMPLE
G.f. = 1 - q - q^2 - q^3 - q^4 + 4*q^5 - q^6 + 6*q^7 - q^8 - q^9 + 4*q^10 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ q] QPochhammer[ q^3] (QPochhammer[ q^4] QPochhammer[ q^6] / QPochhammer[ q^12])^2, {q, 0, n}]; (* Michael Somos, May 18 2015 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^3] QPochhammer[ q^3, q^6]^3 EllipticTheta[ 2, 0, q^(1/2)] EllipticTheta[ 2, Pi/4, q^(1/2)]^2 / (4 q^(3/8)), {q, 0, n}]; (* Michael Somos, May 18 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^3 + A) * eta(x^4 + A)^2 * eta(x^6 + A)^2 / eta(x^12 + A)^2, n))};
(Magma) A := Basis( ModularForms( Gamma1(12), 2), 64); A[1] - A[2] - A[3] - A[4] - A[5] + 4*A[6] - A[7] + 6*A[8] - A[9]; /* Michael Somos, May 18 2015 */
CROSSREFS
Sequence in context: A010642 A127168 A176216 * A257656 A109040 A133828
KEYWORD
sign
AUTHOR
Michael Somos, Jun 17 2005
STATUS
approved