Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #50 Oct 23 2023 08:34:15
%S 1,1,2,6,22,88,368,1584,6968,31192,141656,651136,3023840,14166496,
%T 66876096,317809216,1519163456,7299577216,35237444736,170812433536,
%U 831127053696,4057858988416,19873611712896,97609555091456
%N Number of permutations in S_n avoiding the patterns 1342 and 2143.
%C Also number of permutations in S_n avoiding the patterns 3142 and 2341. Partial sums of A109034.
%C Hankel transform is 2^floor(n^2/3) (see A134751). - _Paul Barry_, Dec 15 2008
%H Vincenzo Librandi, <a href="/A109033/b109033.txt">Table of n, a(n) for n = 0..300</a>
%H Christian Bean, <a href="https://hdl.handle.net/20.500.11815/1184">Finding structure in permutation sets</a>, Ph.D. Dissertation, Reykjavík University, School of Computer Science, 2018.
%H Christian Bean, Émile Nadeau, and Henning Ulfarsson, <a href="https://arxiv.org/abs/1912.07503">Enumeration of Permutation Classes and Weighted Labelled Independent Sets</a>, arXiv:1912.07503 [math.CO], 2019.
%H Darla Kremer and Wai Chee Shiu, <a href="http://dx.doi.org/10.1016/S0012-365X(03)00042-6">Finite transition matrices for permutations avoiding pairs of length four patterns</a>, Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
%H Ian Le, <a href="http://www.combinatorics.org/Volume_12/Abstracts/v12i1r25.html">Wilf classes of pairs of permutations of length 4</a>, Electron. J. Combin., 12(1) (2005), R25, 26 pages.
%H E. Rowland and R. Yassawi, <a href="http://arxiv.org/abs/1310.8635">Automatic congruences for diagonals of rational functions</a>, arXiv preprint arXiv:1310.8635 [math.NT], 2013-2014.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Enumerations_of_specific_permutation_classes#Classes_avoiding_two_patterns_of_length_4">Permutation classes avoiding two patterns of length 4</a>.
%F G.f.: (1-sqrt(1-8*x+16*x^2-8*x^3))/(4*x*(1-x)).
%F From _Paul Barry_, Dec 15 2008: (Start)
%F G.f.: (1-x)*c(2*x*(1-x)^2), where c(x) is the g.f. of A000108;
%F a(n) = sum{k=0..n, (-1)^(n-k)*C(2k+1,n-k)*2^k*A000108(k)}. (End)
%F G.f.: 1/(1-x/(1-x/(1-2x/(1-x/(1-x/(1-2x/(1-x/(1-x/(1-2x...... (continued fraction). - _Paul Barry_, Dec 15 2008
%F a(n) = Sum_{k=0..n} A091866(n,k)*2^(n-k). - _Philippe Deléham_, Nov 27 2009
%F Recurrence: (n+1)*a(n) = 3*(3*n-1)*a(n-1) - 12*(2*n-3)*a(n-2) + 12*(2*n-5) * a(n-3) - 4*(2*n-7)*a(n-4). - _Vaclav Kotesovec_, Oct 24 2012
%F a(n) ~ sqrt(5-sqrt(5))*(sqrt(5)+3)^n/(2*sqrt(2*Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 24 2012. Equivalently, a(n) ~ 5^(1/4) * 2^(n-1) * phi^(2*n - 1/2) / (sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - _Vaclav Kotesovec_, Dec 10 2021
%F G.f. A(x) satisfies: A(x) = (1 - x) * (1 + 2*x*A(x)^2). - _Ilya Gutkovskiy_, Jun 30 2020
%e a(4) = 22 because all permutations of 1234 qualify with the exception of 1342 and 2143.
%p G:=(1-sqrt(1-8*x+16*x^2-8*x^3))/4/x/(1-x): Gser:=series(G,x=0,30): 1,seq(coeff(Gser,x^n),n=1..27);
%t CoefficientList[Series[(1-Sqrt[1-8x+16x^2-8x^3])/(4x(1-x)), {x,0,30}], x] (* _Harvey P. Dale_, Jul 02 2011 *)
%Y Cf. A109034.
%K nonn
%O 0,3
%A _Emeric Deutsch_, Jun 16 2005