login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

(2*7^n - 6*3^n + 4)/6.
1

%I #15 May 30 2023 12:57:55

%S 0,0,8,88,720,5360,38488,272328,1915040,13431520,94099368,658931768,

%T 4613230960,32294742480,226069574648,1582506154408,11077600476480,

%U 77543375522240,542804145216328,3799630566196248,26597418612419600,186181944234074800,1303273651479936408

%N (2*7^n - 6*3^n + 4)/6.

%C Number of incongruent integer-edged Heron triangles whose circumdiameter is the product of n distinct primes of shape 4k + 1 and which are not right-angled.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (11, -31, 21).

%F a(n) = 8*A016212(n-2).

%F (0)=0, a(1)=0, a(2)=8, a(n)=11*a(n-1)-31*a(n-2)+21*a(n-3). - _Harvey P. Dale_, Jan 30 2013

%F G.f.: -8*x^2 / ( (x-1)*(3*x-1)*(7*x-1) ). - _R. J. Mathar_, Feb 10 2016

%t Table[(2*7^n-6*3^n+4)/6,{n,0,30}] (* or *) LinearRecurrence[{11,-31,21},{0,0,8},30] (* _Harvey P. Dale_, Jan 30 2013 *)

%Y Cf. A016212, A109020, A003462.

%K nonn,easy

%O 0,3

%A _Alex Fink_ and _R. K. Guy_, Aug 18 2005