Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #48 Nov 10 2023 09:24:07
%S 9,25,27,81,121,125,169,243,361,625,729,841,1331,1369,2187,2197,2809,
%T 3125,3481,3721,4489,6561,6859,6889,10201,11449,14641,15625,17161,
%U 19321,19683,22201,24389,26569,28561,29929,32041,32761,38809,44521,50653
%N Composite numbers k with primitive root 2; i.e., the order of 2 modulo k is phi(k).
%C There exist no even numbers with primitive root 2. All entries are odd. They are all the powers of odd primes. - _V. Raman_, Nov 20 2012
%H Amiram Eldar, <a href="/A108989/b108989.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..100 from Alois P. Heinz)
%e Modulo 9: 2^1 == 2, 2^2 == 4, 2^3 == 8, 2^4 == 7, 2^5 == 5, 2^6 == 1 and phi(9) == 6.
%t nn=51000; Select[Complement[Range[2, nn], Prime[Range[PrimePi[nn]]]], PrimitiveRoot[#] == 2&] (* _Harvey P. Dale_, Jul 25 2011 *)
%t seq[max_] := Module[{ps = Select[Range[2, Floor[Sqrt[max]]], PrimeQ], s = {}}, Do[s = Join[s, Select[p^Range[2, Floor[Log[p, max]]], PrimitiveRoot[#] == 2 &]], {p, ps}]; Sort[s]]; seq[10^5] (* _Amiram Eldar_, Nov 10 2023 *)
%o (GAP) for i in [2..100000] do if not IsPrime(i) then if IsPrimitiveRootMod(2,i) then Display(i); fi; fi; od;
%o (PARI) for(n=3,100000,if(n%2==1&&isprime(n)==0&&znorder(Mod(2,n))==eulerphi(n),print1(n","))) /* _V. Raman_, Nov 20 2012 */
%Y Intersection of A002808 and A167791.
%Y Cf. A000010, A001122, A002326, A216838, A216848, A219030.
%K nonn
%O 1,1
%A Douglas Stones (dssto1(AT)student.monash.edu.au), Jul 28 2005