login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108920
Number of positive integers k>n such that n+k divides n^2+k^2.
0
0, 1, 2, 2, 2, 4, 2, 3, 4, 5, 2, 7, 2, 5, 7, 4, 2, 8, 2, 7, 8, 5, 2, 10, 4, 5, 6, 7, 2, 15, 2, 5, 8, 5, 7, 13, 2, 5, 8, 10, 2, 15, 2, 8, 12, 5, 2, 13, 4, 9, 8, 8, 2, 12, 8, 10, 8, 5, 2, 23, 2, 5, 13, 6, 8, 15, 2, 8, 8, 16, 2, 17, 2, 5, 13, 8, 7, 16, 2, 13, 8, 5, 2, 23, 8, 5, 8, 10, 2, 26, 7, 8, 8, 5, 8
OFFSET
1,3
COMMENTS
If n+k divides n^2+k^2 then k<=n(2n+1). If n>2 then there are at least two values of k>n such that n+k divides n^2+k^2; they are k=n(n-1) and k=n(2n-1). Further, if n is prime, these are the only two values. If n=2^j, then there are exactly j values of k>x such that n+k divides n^2+k^2; they are k=3n, k=7n, k=15n,..., k=(2x-1)n. Is this sequence the same as A066761 except for the prepended a(1)=0?
EXAMPLE
6+k divides 36+k^2 only for k=12,18,30 and 66, so a(6)=4.
CROSSREFS
Cf. A066761.
Sequence in context: A216620 A181019 A066761 * A079405 A332347 A201353
KEYWORD
nonn
AUTHOR
John W. Layman, Jul 19 2005
STATUS
approved