login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Semiprimes whose digit reversal is a nontrivial power.
1

%I #12 Apr 03 2024 05:06:33

%S 4,9,46,94,121,169,215,526,961,982,1042,1273,1405,1843,2918,3194,4069,

%T 4633,5213,5221,6313,6511,6937,8402,9235,9481,9586,9886,10201,10609,

%U 12538,12769,14023,16171,16327,16582,16723,18085,18463,18811,27845

%N Semiprimes whose digit reversal is a nontrivial power.

%C Some nonsquare brilliant numbers in the sequence: 70597 = 227*311 (79507 = 43^3), 76121 = 163*467 (12167 = 23^3), 211591 = 457*463 (195112 = 58^3), 291149 = 359*811 (941192 = 98^3) ...

%H Chai Wah Wu, <a href="/A108849/b108849.txt">Table of n, a(n) for n = 1..14430</a>

%e 215 is a term because 215 = 5*43 and 512 = 2^9.

%t Revfn[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Select[Range[30000],Revfn[#]>1&&PrimeOmega[#]==2&&ResourceFunction["PerfectPowerQ"][Revfn[#]]&] (* _James C. McMahon_, Apr 02 2024 *)

%o (PARI) isok(n) = (bigomega(n)==2) && ispower(subst(Polrev(digits(n)), x, 10)); \\ _Michel Marcus_, Jun 03 2016

%Y Cf. A069798.

%K base,nonn

%O 1,1

%A _Jason Earls_, Jul 11 2005