Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Sep 08 2022 08:45:19
%S 43,4993,49993,499999993,499999999999993,49999999999999993,
%T 4999999999999999999999993,
%U 49999999999999999999999999999999999999999999999999999999999993
%N Primes of the form 5*10^n-7.
%C Primes such that the leftmost digit is 4, the rightmost digit is 3, and all inner digits are 9.
%H Makoto Kamada, <a href="https://stdkmd.net/nrr/4/49993.htm#prime">Prime numbers of the form 499...993</a>.
%F a(n) = 5*10^A103002(n) - 7.
%t Select[Table[FromDigits[Join[PadRight[{4},n+1,9],{3}]],{n,0, 150}],PrimeQ] (* _Harvey P. Dale_, Feb 01 2012 *)
%o (PARI) n10np9(n,d) = { local(x,y,k); for(x=1,n, for(k=1,8, y=10^(x+1)*k+(10^x-1)*10+k-1; if(isprime(y),print1(y",")) ) ) }
%o (Magma)[a: n in [1..250]|IsPrime(a) where a is (5*10^n-7)] // _Vincenzo Librandi_, Dec 11 2010
%o (PARI) for(n=4,99,if(ispseudoprime(t=10^n/2-7),print1(t", "))) \\ _Charles R Greathouse IV_, Feb 01 2012
%Y Cf. A103002, A101739.
%K easy,nonn,base
%O 1,1
%A _Cino Hilliard_, Jul 11 2005
%E Edited by _Ray Chandler_, Feb 03 2012
%E Comments amended by _Harvey P. Dale_, Feb 03 2012