The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A108750 Even numbers n such that there exists a solution to lcm(r+s,t) = n-1, lcm(s,r+t) = n-2, r,s>0, t>1, r+s+t <= n. 0
58, 146, 156, 206, 288, 466, 478, 496, 498, 562, 596, 610, 640, 716, 738, 782, 834, 838, 870, 982, 1028, 1068, 1162, 1234, 1276, 1314, 1336, 1366, 1636, 1706, 1718, 1856, 1888, 1982, 2110, 2148, 2186, 2206, 2228, 2416, 2452, 2612, 2626, 2642, 2666, 2668 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The alternating groups A_n with n even can be generated by a 3-cycle x=(1,2,3) and an (n-1)-cycle y=(2,3,...n) whose product has cycle type 2 x (n-2). These are called standard generators of A_n. If we assume only that o(y)=n-1 and o(xy)=n-2, then for the values of n in the sequence, y could be the product of 2 cycles (cycle type (r+s).t) and xy can have cycle type s.(r+t). Thus the elements of the sequence give those alternating groups A_n which contain pairs of elements which look like standard generators if one only looks at their orders.
LINKS
EXAMPLE
a(1)=58 because we can take r=11, s=8, t=3 giving lcm(19,3)=57, lcm(8,14)=56
MATHEMATICA
maxTerm = 3000; f[n_] := Module[{cond = False}, Do[r = rs-s; If[r == rt-t && r > 0 && r+s+t <= n, If[LCM[r+s, t] == n-1 && LCM[s, r+t] == n-2, cond = True; Break[]]], {t, Rest[Divisors[n-1]]}, {s, Divisors[n-2]}, {rs, Divisors[n-1]}, {rt, Divisors[n-2]}]; cond]; Reap[For[n = 0; k = 2, k <= maxTerm, k = k+2, If[f[k], n++; Print["a(", n, ") = ", k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, May 06 2017 *)
CROSSREFS
Cf. A108157.
Sequence in context: A118153 A225788 A250733 * A044390 A044771 A127025
KEYWORD
nonn
AUTHOR
Simon Nickerson (simonn(AT)maths.bham.ac.uk), Jun 23 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 11:45 EDT 2024. Contains 372824 sequences. (Running on oeis4.)