login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108672
a(n) = Sum{k=1 to n} sigma_{n-k+1}(k), where sigma_m(k) = sum{j|k} j^m.
1
1, 4, 10, 27, 73, 227, 767, 2860, 11569, 50363, 234155, 1156037, 6031747, 33130183, 190929773, 1151198266, 7243777228, 47462906925, 323188163747, 2282922216815, 16701529748617, 126359471558611, 987316752551411, 7957198067362137
OFFSET
1,2
EXAMPLE
a(5) = 1^5 + (1^4 +2^4) + (1^3 +3^3) + (1^2 +2^2 +4^2) + (1^1 +5^1) = 1 + 17 + 28 + 21 + 6 = 73.
MAPLE
with(numtheory): s:=proc(n, k) local div: div:=divisors(n): sum(div[j]^k, j=1..tau(n)) end: a:=n->sum(s(i, n-i+1), i=1..n): seq(a(n), n=1..25); # Emeric Deutsch, Jul 13 2005
PROG
(PARI) a(n) = sum(k=1, n, sigma(k, n-k+1)); \\ Michel Marcus, Aug 16 2019
CROSSREFS
Cf. A108699 (with product).
Sequence in context: A077923 A183325 A052982 * A000495 A027067 A050262
KEYWORD
nonn
AUTHOR
Leroy Quet, Jul 07 2005
EXTENSIONS
More terms from Emeric Deutsch, Jul 13 2005
STATUS
approved